
TA N G I B L E

danilo bargen

A Python library to convert data into tangible 3D models.
Student Research Project Thesis, Fall 2013.

Danilo Bargen: Tangible, A Python library to convert data into tangible
3D models. c© Fall 2013

supervisors:
Prof. Dr. Josef M. Joller

university:
HSR University of Applied Science Rapperswil

department:
Department of Computer Science

institute:
ITA Institute for Internet Technologies and Applications

location:
Rapperswil

time frame:
Fall 2013

license:
CC BY-SA 3.0 Unported

A B S T R A C T

In the past, making data tangible was a complicated, manual pro-
cess. Digital 3D representations of complex data have been around
for quite a while, but they were always confined to the digital world.
Mostly because it was impractical to convert a digital model to a
physical representation.

With the advent of cheap, affordable 3D printers, this changed. It
is now easy to convert a purely digital model to a tangible, physical
object. The missing piece in the process of making data tangible is the
conversion of data to a digital 3D model.

This thesis wants to solve that problem by providing an easy to use
software library with “batteries included” that can convert arbitrary
numeric data to 3D models. The library – named Tangible – is written
in Python and provides a set of predefined but customizable shapes,
a few tools to preprocess data and a backend implementation for
OpenSCAD, an open source programmatic CAD software.

Tangible is implemented as a cross-compiler with a simple abstract
syntax tree (AST), a set of predefined shapes that build on top of
the AST and an interface that allows the creation of different code
generation backends.

The library is ready to use, well tested and thoroughly documented.
It has been released under an open source license and is available
online at https://github.com/dbrgn/tangible.

keywords :
3D Printing, CAD, Cross Compilers, Data Analysis, Data Visualization,
OpenSCAD, Python, Software Libraries, Statistics, Tangible

iii

https://github.com/dbrgn/tangible

A C K N O W L E D G E M E N T S

First of all I would like to thank my supervisor Prof. Dr. Josef M. Joller
for the support and the freedom he gave me during the planning and
implementation of this project.

Second I would like to thank Tobias Zehnder, who brought up the
idea of tangible printable statistics at an afterwork beer-and-burger
meeting.

Further thanks go to Prof. Oliver Augenstein, who helped me with
questions related to curve interpolation using splines.

And last but not least, I would like to thank Prof. Dr.-Ing. An-
dré Miede for providing the great classicthesis LATEX-Template which I
used for this thesis.

v

C O N T E N T S

List of Figures ix
Acronyms x

i introduction 1

1 motivation 3

1.1 Data Visualization . 3

1.2 The Rise of Affordable 3D Printing 3

1.3 From Data to Tangible Objects 5

2 goals 7

2.1 Features . 7

2.2 Usability . 7

2.3 Quality . 7

ii the library 9

3 features & usage 11

3.1 Introduction . 11

3.2 Usage . 11

3.2.1 Preprocessing Data . 11

3.2.2 Creating a Shape Instance 12

3.2.3 Rendering the Code . 13

3.3 Future Developments . 14

3.3.1 More Backends . 14

3.3.2 More Shapes . 14

3.3.3 Interpolation / Smoothing 14

3.3.4 Data Preprocessing Tools 15

3.3.5 Python 3 Support . 15

4 architecture 17

4.1 Overview . 17

4.2 AST . 17

4.2.1 Base Class . 18

4.2.2 2D Shapes . 18

4.2.3 3D Shapes . 18

4.2.4 Transformations . 18

4.2.5 Boolean Operations . 18

4.2.6 Extrusions . 19

4.3 Backends . 19

4.3.1 Creating Custom Backends 19

4.4 Shapes . 19

4.4.1 Base Class . 20

4.4.2 Mixins . 20

4.4.3 Shape Classes . 21

4.5 Utils . 22

vii

viii contents

4.5.1 Scales . 22

4.5.2 Helper Functions . 22

5 examples 25

5.1 A Simple Tower . 25

5.2 Multi Dimensional Data . 26

5.3 Reading Data from CSV . 27

5.4 Grouped Data . 28

5.5 Creating Custom Shapes from AST 29

iii the development process 31

6 development process & tools used 33

6.1 Coding Guidelines . 33

6.2 Future Imports . 33

6.3 Testing . 34

6.3.1 Writing Tests . 35

6.3.2 Running Tests . 36

6.3.3 Measuring Test Coverage 36

6.4 Tools Used . 37

7 design decisions & implementation details 39

7.1 Pairwise Iterator . 39

7.2 Code Generation . 40

7.3 Circle Sectors in OpenSCAD 42

iv appendix 45

bibliography 47

L I S T O F F I G U R E S

Figure 1 US Patent 5121329 4

Figure 2 3D visualization of a temperature range 13

Figure 3 Architecture Diagram 17

Figure 4 Shapes Architecture 20

Figure 5 A CircleTower1D shape 25

Figure 6 An AnglePie2D shape 26

Figure 7 A RhombusTower2D shape from CSV data . . 27

Figure 8 A BarsND shape from CSV data grouped by
month . 28

Figure 9 A custom cogwheel shape 29

Figure 10 Travis CI . 36

Figure 11 Circle and polygon combinations at different
angles . 43

Figure 12 The resulting circle sector for an angle of 225
◦

43

ix

A C R O N Y M S

ABS Acrylonitrile Butadiene Styrene, a “Lego-like” filament used
by FDM 3D printers

AST Abstract Syntax Tree, a logical representation of a computer
program used by compilers

CAD Computer-aided Design, the use of computer systems to assist
in the creation, modification, analysis, or optimization of a
design

CSV Comma-Separated Values, a file format to store tabular data

FDM Fused Deposition Modeling, a 3D printing technology

JSON JavaScript Object Notation, a lightweight data-interchange
format

PEP Python Enhancement Proposal

PLA Polylactic Acid, a biodegradeable filament used by FDM 3D
printers

STL STereoLithography, a file format for 3D models widely used in
the field of 3D printing

TDD Test Driven Development, a software development
methodology

x

Part I

I N T R O D U C T I O N

What is this student research project thesis about? What
can Tangible do? What is the motivation and history of 3D
printing and tangible statistics?

1
M O T I VAT I O N

Data visualization is definitely nothing new. Neither is software to
do statistical analysis or 3D model generation. And 3D printers have
been around since 1984. But what happens if all these things are com-
bined? By doing that, data visualization is taken to a physical level.

1.1 data visualization

The main goal of data visualization is its ability to visualize
data, communicating information clearly and effectively.
— Vitaly Friedman [7]

Data visualization tries to make raw data more easily accessible.
Changes in datapoints over time should be visible, relations between
different datasets should become apparent, and at the same time the
visualization should be easy to understand and pleasant to look at.

The traditional means to visualize data were mostly two dimen-
sional: Maps visualize geographical and topological relations between
objects and landmarks, charts show a dataset in an easy to under-
stand graphical way and infographics present complex information
about a specific topic quickly and clearly.

With the advent of computers, data visualization became interac-
tive. Data could be visualized in two- and three dimensional ways
and a user could interact with the data and learn more about it.

But digital 3D visualizations are still only two dimensional projec-
tions of three dimensional objects. Data and its visualization can be
taken to a new level by making the visualizations tangible.

In the past, creating physical objects to convey information was not
something very common. It was mostly done by artists as a creative
way to display information in the form of a sculpture or another type
of object [4][10]. But it was a manual, slow and tedious process.

1.2 the rise of affordable 3d printing

Digital 3D representations of complex data have been around for
quite a while [8], but they were always confined to the digital world.
Mostly because it was impractical to convert a digital model to a
physical representation.

Industrial 3D printing and CNC milling have been available for
about 3 decades, but just until recently these machines were pro-

3

4 motivation

hibitively expensive for regular people that just wanted to visualize
data. The only alternative was manual work.The patent

“US5121329:
Apparatus and

method for creating
three-dimensional

objects” was granted
to S. Scott Crump in
1992 and expired in

2009.

During the last few years this changed. In 2009, US patent 5121329

[3] expired, and with that prices for consumer-ready 3D printers
plummeted.

Figure 1: US Patent 5121329

The RepRap project
works on creating

general-purpose
self-replicating

machines capable of
printing plastic

objects, and making
them freely available

for the benefit of
everyone.

The surge of new cheap 3D printers – as an affordable alternative
to the large, expensive industrial-grade machines – was largely due
to an increasing number of enthusiasts from the Hacker- and Maker-
communities that worked on projects like the RepRap1, a very suc-
cessful and influential project.

As Erik De Bruijn, founder of the successful Ultimaker2 company,
discusses in his Master’s thesis “On the viability of the Open Source De-
velopment model for the design of physical objects – Lessons learned from the
RepRap project” [2], the Open Source development model has proven
to be well suited in the field of physical fabrication.

At the same time, while many of these projects were started by
communities as non commercial Open Source3 and Open Hardware4

projects, crowdfunding platforms like Kickstarter5 and Indiegogo6

made raising capital for new 3D printers quick and easy, something
that would not have been possible 10 years ago. This resulted in a
flood of readily assembled, affordable 3D printers even for people
lacking the skills to build their own machine from a list of parts.

1 http://reprap.org/wiki/RepRap

2 https://www.ultimaker.com/

3 http://opensource.org/

4 http://www.oshwa.org/

5 http://www.kickstarter.com/

6 http://www.indiegogo.com/

http://reprap.org/wiki/RepRap
https://www.ultimaker.com/
http://opensource.org/
http://www.oshwa.org/
http://www.kickstarter.com/
http://www.indiegogo.com/

1.3 from data to tangible objects 5

1.3 from data to tangible objects

With the rapid and constantly accelerating developments in the field
of 3D printing, visualizing data as real, tangible objects has become
feasible. There are still some hurdles though. The majority of people –
even those owning a 3D printer – have no experience with 3D model-
ing software. Most freely available software tools to create 3D models
– like OpenSCAD7 or Blender8 – require a steep learning curve and
demand a nontrivial amount of learning time to create the desired
models. And platforms like Thingiverse9 or YouMagine10 provide so
many freely available models that creating own objects is often not
even a necessity.

Another aspect is that these general-purpose modeling tools are
not optimized for data visualization. Each type of visualization has
to be created manually, and when the data changes it’s a lot of manual
work to update the model.

Tangible was created to fill that void. It makes creation of customized,
printable data visualizations as 3D models easy, while at the same
time retaining a lot of flexibility for customization.

7 http://www.openscad.org/

8 http://www.blender.org/

9 http://www.thingiverse.com/

10 https://www.youmagine.com/

http://www.openscad.org/
http://www.blender.org/
http://www.thingiverse.com/
https://www.youmagine.com/

2
G O A L S

The goals of this thesis can be summarized as follows:

2.1 features

• The result of the thesis is a Python library to visualize data as
printable 3D objects. It should handle single- and multi-dimensional
data.

• The library should provide a set of basic predefined shapes.

• It should be possible to create custom shapes using the pro-
vided primitives.

• The input and output should be decoupled. The library should
act as a cross compiler. It should be possible to generate code
for different backends.

• During the time of this thesis, the main targeted backend is
OpenSCAD1.

• The library should run on Python 2.7.

2.2 usability

• The library should be pythonic2 and easy to use.

• Comprehensive documentation should be available.

2.3 quality

• The library should be well tested (at least 80% test coverage).

• Tests should run automatically every time code is pushed to the
repository.

• Change in test coverage should be measured each time the tests
are run.

1 http://www.openscad.org/

2 http://stackoverflow.com/q/58968

7

http://www.openscad.org/
http://stackoverflow.com/q/58968

Part II

T H E L I B R A RY

What is Tangible about? What can it do? How is it struc-
tured? Where could it be improved?

3
F E AT U R E S & U S A G E

3.1 introduction

Tangible is a Python library to convert data into tangible 3D models.
It generates code for different backends. It is inspired by projects like
OpenSCAD and d3.js1.

The Python programming language has proven to be an easy, acces-
sible and at the same time very powerful language for data analysis
and many other tasks. Due to its readable syntax, it’s very easy to
get started with it, even for people without any prior programming
knowledge. Tangible tries to built upon this foundation, by providing
an easy to use software library that has “batteries included”. It should
be easy to process a dataset, normalize the values and generate the
desired visualization.

The difference from Projects like SolidPython2 is that Tangible is a
modular system with an intermediate representation of objects that
is capable of generating code for different backends, it’s not tied to a
single representation. Additionally, its main focus is not general CAD,
but printable 3D visualization of data.

Besides the support for model generation and different backends,
Tangible also provides utilities to preprocess data, e.g. for normaliza-
tion of data or for grouping and aggregation of data.

The library runs on Python 2.6 and 2.7. Support for Python 3.3+ is
planned.

3.2 usage

Tangible was designed to be very straightforward to use. Common
data visualizations should be possible with just a few lines of code.

Visualizing data with Tangible consists of three steps: Preprocessing
the data, creating a shape instance and finally rendering the code
using the desired backend.

3.2.1 Preprocessing Data

Many times the data is not yet in the right form for visualization.
Let’s say that the user has air temperature measurements for every
hour during an entire day. The temperature range is between 8

◦C
during the night and 22

◦C during the day.

1 http://d3js.org/

2 https://github.com/SolidCode/SolidPython

11

http://d3js.org/
https://github.com/SolidCode/SolidPython

12 features & usage

>>> temperatures = [

>>> 10, 9, 8, 8, 9, 8, 9, 10, 12, 15, 17, 19,

>>> 20, 22, 22, 21, 20, 17, 14, 12, 11, 10, 9, 10

>>>]

To visualize the data, the user wants to create a round tower where
the radius of a slice corresponds to a temperature measurement. But
the temperatures are not well suited to be used directly as millimeter
values. Therefore the user wants to linearly transform the range 8–22

(◦C) to the range 10–40 (mm).
Tangible provides helper functions for this called scales. First a linear

scale needs to be constructed:

>>> from tangible import scales

>>> scale = scales.linear(domain=[8, 22], codomain=[10, 40])

The returned object is the actual scaling function. It can be used di-
rectly:

>>> scale(8)

10.0

>>> scale(15)

25.0

>>> scale(22)

40.0

...or it can be used in combination with Python’s map() function:

>>> radii = map(scale, temperatures)

>>> radii

[14.285714285714285, 12.142857142857142, 10.0, 10.0, ...]

Now the data is ready to be visualized. There are also several other
functions to preprocess data, for example to group or aggregate data-
points. For more information, take a look at section 4.5 Utils.

3.2.2 Creating a Shape Instance

Tangible provides many predefined shapes that can be used directly.
Currently there are three types of shapes: Vertical shapes, bar shapes
and pie shapes.

For the temperature tower, the user needs the CircleTower1D shape
from the tangible.shapes.vertical module. The class requires two
arguments: The data list as well as the height of each layer.

>>> from tangible.shapes.vertical import CircleTower1D

>>> tower = CircleTower1D(data=radii, layer_height=2)

An overview over all shape classes can be found in section 4.4.3.

3.2 usage 13

3.2.3 Rendering the Code

Now the shape is ready to be rendered. First, choose the desired back-
end from the tangible.backends package. At the time of this writing,
the only available backend is the OpenSCAD backend.

>>> from tangible.backends.openscad import OpenScadBackend

Next, render the shape using this backend. For convenience, we write
the resulting code directly into a file.

>>> with open(’tower.scad’, ’w’) as f:

... code = tower.render(backend=openscad.OpenScadBackend)

... f.write(code)

The OpenSCAD code can now be rendered on the command line (or
alternatively from the GUI tool) into an image for previewing or into
an STL file for printing:

$ openscad -o tower.png --render --imgsize=512,512 tower.scad

CGAL Cache insert: cylinder($fn=0,$fa=12,$fs=2,h=5,r1=14.28)

CGAL Cache insert: cylinder($fn=0,$fa=12,$fs=2,h=5,r1=12.14)

...

$ openscad -o tower.stl --render tower.scad

CGAL Cache insert: cylinder($fn=0,$fa=12,$fs=2,h=5,r1=14.28)

CGAL Cache insert: cylinder($fn=0,$fa=12,$fs=2,h=5,r1=12.14)

...

The result:

Figure 2: 3D visualization of a temperature range

A few more usage examples are available in the Examples chapter on
page 25.

14 features & usage

3.3 future developments

There are many areas where Tangible could still be improved, for ex-
ample by adding more backends and shapes, by improving Python
version support or by adding more utils and helper functions.

3.3.1 More Backends

OpenSCAD was chosen as the initial backend because of its popu-
larity. Moreover, it’s freely available and open source. Due to its pro-
grammatic nature, it’s easy to implement as a backend and it also
allows the resulting code to be modified directly to make some final
adjustments before printing.

Another possible backend would have been ImplicitCAD3. It’s a
project strongly inspired by OpenSCAD but with additional features
on top of it. ImplicitCAD is is written in Haskell and supports both
an OpenSCAD compatible "legacy" syntax as well as the traditional
Haskell notation.

Both of these examples are programmatic CAD tools. A step fur-
ther would be to support the widely used STL format directly as a
backend. But implementing direct STL generation would have gone
beyond the scope of this thesis and was therefore not attempted.

3.3.2 More Shapes

Right now Tangible provides three base shape types with different
variants. But the shape library could be further extended, in order to
provide even more visualizations that can be used by users without
any additional modeling efforts.

3.3.3 Interpolation / Smoothing

Tangible provides no tools for interpolation / smoothing of surfaces.
This means that shapes with a lot of datapoints may look very ragged
and printing them may cause problems because of the overhanging
surfaces.

Although libraries like Numpy4 and SciPy5 provide interpolation
functionality, this is something that Tangible should provide out of the
box. A possible way of implementing curve smoothing would be by
using spline interpolation. This feature is planned for a future release.

3 http://www.implicitcad.org/

4 http://www.numpy.org/

5 http://www.scipy.org/

http://www.implicitcad.org/
http://www.numpy.org/
http://www.scipy.org/

3.3 future developments 15

3.3.4 Data Preprocessing Tools

The current selection of data preprocessing tools is already very use-
ful, but still doesn’t cover many use cases. Therefore these utils should
be expanded, for example by adding logarithmic and exponential
scales and by adding more grouping functions. Furthermore the scales
could be improved to allow changes in the domain / codomain as
well as rescaling of the data at any point in time.

3.3.5 Python 3 Support

Right now Tangible is written for Python 2.6/2.7. But it would be quite
easy to add support for Python 3.3+, especially because the extensive
use of future imports (see section 6.2). Python 3 support is already
planned and will be implemented soon.

4
A R C H I T E C T U R E

4.1 overview

Tangible is implemented as a single Python package, without any ex-
ternal dependencies.

The architecture of Tangible can be categorized into four different
components: The abstract syntax tree (4.2), code generation backends
(4.3), shapes (4.4) and utils (4.5).

AST

Base

Ba
rs

Ve
rt

ic
al

Pi
e

Sc
al

es

H
el

pe
r

Fu
nc

ti
on

s

OpenSCAD ...

Shapes Utils

Backends

Figure 3: Architecture Diagram

4.2 ast

The ast.py module provides the objects for the abstract syntax tree
(AST) for Tangible. All AST objects extend a single base class called
AST. This base class is responsible for three things:

• It provides a single base type that can be used for type checking,
e.g. isinstance(mysubclass, ast.AST).

• It overrides the __eq__ and __ne__ methods, with the result that
all subclasses are compared by value (using self.__dict__),
and not by identity.

17

18 architecture

• It provides a __repr__ implementation that displays both the
class name as well as the object memory address, which simpli-
fies debugging.

The module contains the following classes:

4.2.1 Base Class

• AST: The base shape for all AST elements, as described above.

4.2.2 2D Shapes

• Circle: A circle shape with a specified radius.

• CircleSector: A circle sector shape (pizza slice) with a specified
radius and angle.

• Rectangle: A rectangular shape with a specified width and
height.

• Polygon: A polygon shape made from a list of 2D coordinates.

4.2.3 3D Shapes

• Cube: A cube with a specified width, height and depth.

• Sphere: A sphere with a specified radius.

• Cylinder: A cylinder with a height and top/bottom radii.

• Polyhedron: An arbitrary 3D shape made from connected trian-
gles or quads.

4.2.4 Transformations

• Translate: Used to translate an object.

• Rotate: Used to rotate an object.

• Scale: Used to scale an object.

• Mirror: Used to mirror an object.

4.2.5 Boolean Operations

• Union: A combination of multiple shapes into a single shape.

• Difference: A boolean difference of two or more shapes.

• Intersection: A boolean intersection of two or more shapes.

4.3 backends 19

4.2.6 Extrusions

• LinearExtrusion: An extrusion of a 2D object linearly along the
z axis.

• RotateExtrusion: An extrusion of a 2D object around the z axis.

4.3 backends

The backends are responsible for code generation. They receive an
AST instance, traverse it and emit backend specific code.

At the time of this writing, only one backend has been imple-
mented: The OpenSCAD backend. But it would be very easy to add
additional backends in the future.

4.3.1 Creating Custom Backends

In duck typed
programming
languages like
Python, interfaces
are usually not
declared explicitly.
The adherence to the
interface is only
judged by the
behavior of the
implementation: If it
looks like a duck,
swims like a duck,
and quacks like a
duck, then it
probably is a duck.

To be valid, a custom backend simply needs to implement the follow-
ing interface:

class CustomBackend(object):

def __init__(self, ast):

"""Initialize backend using the provided AST."""

def generate(self):

"""Generate code from AST and return it

as a unicode string."""

The code generated by a backend is returned as a unicode string. It
can then be printed to the terminal or used for further processing.

Implementation details regarding the already existing backend can
be found in section 7.2.

4.4 shapes

The shapes package is a key component of Tangible. It provides a
hierarchical collection of predefined shapes that can be used directly
to generate three dimensional data visualizations.

The package is organized into different files:

• base.py: Base classes for all shape objects.

• mixins.py: Mixins used in the shape classes, mostly used for
data validation.

• bars.py: Bar like shapes.

• vertical.py: Vertical shapes, e.g. towers.

• pie.py: Circular "pie" shapes.

20 architecture

base.py

b
a
r
s
.
p
y

v
e
r
t
i
c
a
l
.
p
y

p
i
e
.
p
y

m
i
x
i
n
s
.
p
y

shapes/

Figure 4: Shapes Architecture

4.4.1 Base Class

The class Shape in shapes/base.py is the base class for all predefined
shapes in Tangible:

class BaseShape(object):

def _build_ast(self):

raise NotImplementedError("_build_ast method not implemented.")

def render(self, backend):

ast = self._build_ast()

return backend(ast).generate()

class Shape(BaseShape):

def __init__(self, data):

self.data = utils.ensure_list_of_lists(data)

if len(self.data[0]) == 0:

raise ValueError("Data may not be empty.")

Each shape is initialized with the data as the first positional argument.
Using a helper function, single lists with one dimensional data are
converted to nested lists, to simplify the rendering code. Empty data
is not allowed.

The _build_ast() method is not implemented in the base class. An
inheriting class needs to override the method and return an AST.

Finally, the render(backend) method renders the AST using the
specified backend class and returns the resulting source code as a
unicode string, as described in section 4.3.

4.4.2 Mixins

The mixin classes are used in combination with Python’s multiple
inheritance system to provide "pluggable" generic data validation. At
the time of this writing, the following mixins are available:

• Data1DMixin: Ensures that data contains exactly 1 dataset.

4.4 shapes 21

• Data2DMixin: Ensures that data contains exactly 2 datasets.

• Data3DMixin: Ensures that data contains exactly 3 datasets.

• Data4DMixin: Ensures that data contains exactly 4 datasets.

• DataNDMixin: Used for shapes where the number of data dimen-
sions is not relevant. But it asserts that the data is not empty and
that all data items are of a sequence type.

• SameLengthDatasetMixin: Ensures that all datasets have the same
length.

The mixins are properly implemented using Python’s argument list
unpacking (*args, **kwargs) and super() calls, so that a class can
use multiple mixins without breaking the inheritance chain. A good
example where this is used is the RectangleTower2D shape:

class RectangleTower2D(Data2DMixin,

SameLengthDatasetMixin, VerticalShape):

...

4.4.3 Shape Classes

The final shape classes are grouped into three categories: Bar shapes,
vertical shapes and pie shapes.

• Bar shapes consist of several bars that start on z=0 and have a
height depending on the corresponding datapoint. They can be
aligned in rows, and rows can be combined to create 3D bar
graphs.

• A vertical shape is a shape with layers stacked on top of each
other, with a fixed layer height, for example a round tower
where the radius of each layer corresponds to the datapoint.

• A pie shape can represent data as angle, height or radius of the
corresponding slice. It is also possible to define an inner radius
(→donut) and to explode the slices.

The naming of the shape classes follows a consistent pattern: First a
descriptive name of the shape (e.g. RhombusTower or RadiusHeightPie),
then the dimensionality of the data (e.g. 1D, 4D or ND). A way to de-
scribe data dimensionality in Python terms would be: n-dimensional
data is a list containing n lists.

22 architecture

4.5 utils

4.5.1 Scales

The module scales.py contains functions for mapping an input do-
main to an output range (the codomain). For example it could be used
to normalize temperatures between 0

◦C and 100
◦C to values between

1 and 10. The scales are inspired by the quantitative scales in d3.js1.
At the time of this writing, only a linear scale has been imple-

mented. It accepts three parameters: The domain, the codomain (out-
put range), and whether to clamp the values to the output range or
not.

>>> from tangible import scales

>>> temperatures = [32, 60, 100, 0, 120, -50]

>>> domain = [0, 100] # Input range

>>> codomain = [1, 10] # Output range

>>> scale = scales.linear(domain, codomain, clamp=False)

>>> scale_clamp = scales.linear(domain, codomain=, clamp=True)

The returned object is the actual scaling function:

>>> scale(0)

1.0

>>> scale(50)

5.5

>>> scale(100)

10.0

A very convenient way to use scales is by applying them using the
map() function:

>>> map(scale, temperatures)

[3.88, 6.3999999999999995, 10.0, 1.0, 11.799999999999999, -3.5]

>>> map(scale_clamp, temperatures)

[3.88, 6.3999999999999995, 10.0, 1.0, 10, 1]

Logarithmic and exponential scales as well as dynamic resizing of
domains / codomains are currently not implemented, but will follow
in the future.

4.5.2 Helper Functions

The module utils.py contains different helper functions to simplify
common tasks.

1 https://github.com/mbostock/d3/wiki/Quantitative-Scales

https://github.com/mbostock/d3/wiki/Quantitative-Scales

4.5 utils 23

4.5.2.1 pairwise(iterable)

This function returns a generator acting as a sliding window over an
iterable. Each item returned by the generator is a 2-tuple containing
two consecutive items from the original iterable.

Example:

>>> from tangible import utils

>>> pairs = utils.pairwise([1, 2, 3, 4, ’a’])

>>> pairs

<itertools.izip object at 0xeea098>

>>> list(pairs)

[(1, 2), (2, 3), (3, 4), (4, ’a’)]

4.5.2.2 reduceby(iterable, keyfunc, reducefunc, init)

This function combines the functionality of itertools.groupby() and
reduce(). It iterates over the iterable and aggregates the values using
the specified reduce function and init value as long as keyfunc(item)
returns the same value. Each time the key changes, the aggregated
value is yielded.

A possible use case could be the aggregation of website visits,
grouped by month. Example:

>>> from datetime import date

>>> from tangible import utils

>>> visits = [(date(2013, 1, 24), 27),

... (date(2013, 1, 26), 4),

... (date(2013, 2, 17), 19),

... (date(2013, 3, 11), 23),

... (date(2013, 3, 14), 42)]

>>> keyfunc = lambda x: x[0].month

>>> reducefunc = lambda x, y: x + y[1]

>>> groups = utils.reduceby(visits, keyfunc, reducefunc, 0)

>>> groups

<generator object reduceby at 0xedc5a0>

>>> list(groups)

[31, 19, 65]

The corresponding SQL statement would be:

SELECT SUM(visit_count) FROM visits GROUP BY MONTH(visit_date);

4.5.2.3 connect_2d_shapes(shapes,layer_distance, orientation)

This is quite a complex function. It connects a list of 2D shapes into
a 3D shape using the desired layer distance. The orientation argu-
ment specifies, whether the shapes should be joined horizontally or
vertically.

24 architecture

The main part of the function has separate implementations depend-
ing on the 2D object. Circles are connected by joining cylinders, while
rectangles and polygons are connected by joining polyhedra.

Example:

>>> from tangible import utils, ast

>>> shapes = [ast.Circle(3), ast.Circle(8), ast.Circle(5)]

>>> utils.connect_2d_shapes(shapes, layer_distance=10,

... orientation=’vertical’)

<AST/Union: 21376464>

4.5.2.4 _quads_to_triangles(quads)

This function converts a list of quads (4-tuples) to a list of trian-
gles (3-tuples). This is mostly because many backends require surface
meshes to consist of triangles, without support for quads.

Example:

>>> from tangible import utils

>>> quads = [(0, 1, 2, 3)]

>>> utils._quads_to_triangles(quads)

[(0, 1, 2), (0, 2, 3)]

The function is mostly used internally. A stable API is not guaranteed.

4.5.2.5 _ensure_list_of_lists(data)

This function ensures that the argument is a list of lists. If it doesn’t
contain lists or tuples, it is wrapped in a list and returned.

Example:

>>> utils._ensure_list_of_lists([1, 2, 3])

[[1, 2, 3]]

>>> utils._ensure_list_of_lists([[1, 2], [3]])

[[1, 2], [3]]

The function is mostly used internally. A stable API is not guaranteed.

5
E X A M P L E S

The following pages demonstrate a few code examples of how to use
the Tangible library.

5.1 a simple tower

This example describes a simple round tower where the radius of the
layers corresponds to the datapoint. The dataset describes the number
of web site visits on http://blog.dbrgn.ch/ during the month of
September 2013. The value range is normalized to a range between
10 and 50 using a linear scale.

from tangible import scales

from tangible.shapes.vertical import CircleTower1D

from tangible.backends.openscad import OpenScadBackend

Normalize raw data

visits = [53, 69, 86, 92, 81, 76, 37, 36, 62, 76, 72, 67, 55, 61, 54,

72, 92, 84, 78, 75, 45, 48, 85, 81, 83, 69, 68, 66, 62, 115]

scale = scales.linear([min(visits), max(visits)], [10, 50])

datapoints = map(scale, visits)

Create shape

tower = CircleTower1D(datapoints, layer_height=10)

Render OpenSCAD code

code = tower.render(backend=OpenScadBackend)

print code

Figure 5: A CircleTower1D shape

25

http://blog.dbrgn.ch/

26 examples

5.2 multi dimensional data

Here we have two dimensional data, represented as two lists of inte-
gers. The first list should be mapped to the angle of the “pie slices”,
while the second list should be mapped to the height of each slice.
Additionally, we’ll add a center radius to make the model look like a
donut, and we’ll explode the slices.

from tangible.shapes.pie import AngleHeightPie2D

from tangible.backends.openscad import OpenScadBackend

Data

datapoints = [

[30, 30, 5, 5, 20], # Angle

[18, 23, 20, 15, 10], # Height

]

Create shape

pie = AngleHeightPie2D(datapoints, inner_radius=4, explode=1)

Render OpenSCAD code

code = pie.render(backend=OpenScadBackend)

print code

Figure 6: An AnglePie2D shape

5.3 reading data from csv 27

5.3 reading data from csv

Often the data that you want to visualize is not already available as a
Python datastructure, but in formats like JSON or CSV. Here’s a small
example where website visitor data is read from the CSV exported by
Google Analytics. Then the number of visits and the average visit
duration are mapped to the distance between opposing corners of a
rhombus tower.

import csv

from datetime import timedelta

from tangible.shapes.vertical import RhombusTower2D

from tangible.backends.openscad import OpenScadBackend

Read data into list

datapoints = [[], []]

with open(’analytics-sep-13.csv’, ’r’) as datafile:

reader = csv.DictReader(datafile)

for row in reader:

datapoints[0].append(int(row[’Visits’]))

h, m, s = map(int, row[’AvgDuration’].split(’:’))

duration = timedelta(hours=h, minutes=m, seconds=s)

datapoints[1].append(duration.total_seconds())

Create shape

tower = RhombusTower2D(datapoints, layer_height=10)

Render OpenSCAD code

code = tower.render(backend=OpenScadBackend); print code

Here are the CSV contents:

Day,Visits,AvgDuration

9/1/13,53,00:00:51

9/2/13,69,00:01:01

9/3/13,86,00:01:24

...

And the resulting shape:

Figure 7: A RhombusTower2D shape from CSV data

28 examples

5.4 grouped data

Some one dimensional datasets does not work well when visualized
directly. An example would be website visitor statistics during a full
year, a single bar graph would be much too wide. But by grouping
the data from example 5.3 into months, a BarsND graph can be con-
structed:

import csv

from itertools import chain

from tangible import scales

from tangible.shapes.bars import BarsND

from tangible.backends.openscad import OpenScadBackend

Read data into list

datapoints = [list() for i in xrange(9)]

with open(’analytics-full-13.csv’, ’r’) as datafile:

reader = csv.DictReader(datafile)

for row in reader:

date = row[’Day’]

month = int(date.split(’/’, 1)[0])

visits = int(row[’Visits’])

datapoints[month - 1].append(visits)

Normalize data

all_datapoints = list(chain.from_iterable(datapoints))

scale = scales.linear([min(all_datapoints), max(all_datapoints)],

[10, 150])

datapoints = map(lambda x: map(scale, x), datapoints)

Create shape

bars = BarsND(datapoints, bar_width=7, bar_depth=7)

Render OpenSCAD code

code = bars.render(backend=OpenScadBackend); print code

Figure 8: A BarsND shape from CSV data grouped by month

5.5 creating custom shapes from ast 29

5.5 creating custom shapes from ast

It’s not necessary to rely on the provided shape classes only, you can
also create your own shapes by using the AST objects directly.

The easiest and cleanest way to do this, is to create a subclass of
the BaseShape class and to override its _build_ast method:

from tangible.shapes.base import BaseShape

from tangible import ast

from tangible.backends.openscad import OpenScadBackend

Create custom shape

class Cogwheel(BaseShape):

def _build_ast(self):

cogs = []

for i in xrange(18):

cog = ast.Rectangle(2, 2)

translated = ast.Translate(9.5, -1, 0, cog)

rotated = ast.Rotate(i * 30, (0, 0, 1), translated)

cogs.append(rotated)

return ast.Union([ast.Circle(radius=10)] + cogs)

Render shape

f = Cogwheel()

code = f.render(backend=OpenScadBackend)

print code

Figure 9: A custom cogwheel shape

Part III

T H E D E V E L O P M E N T P R O C E S S

How was the library developed? What tools were used?
What design decisions were made?

6
D E V E L O P M E N T P R O C E S S & T O O L S U S E D

6.1 coding guidelines

The PEPs (Python
Enhancement
Proposals) are
Python’s way of
continuously
improving the
language in a
community driven
process. Any
community member
can submit a
proposal for a
language change,
which is then
discussed and
accepted or rejected.

Coding guidelines are important in order to achieve a consistent style
throughout the codebase. In the Python world, the PEP8 style guide
[11] has seen near ubiquitous adaptation and should be used for all
projects in order to aid the legibility of the source code.

One of Guido’s key insights is that code is read much more often
than it is written. The guidelines provided here are intended to
improve the readability of code and make it consistent across the
wide spectrum of Python code. As PEP 20 says, “Readability
counts”.
— Style Guide for Python Code [11]

Tangible follows most parts of PEP8, with two exceptions:

• While line lengths below 80 characters are the ideal case, lines
with up to 99 characters are still acceptable, if it makes the code
more readable.

• Errors E126-E128, which specify indentation rules for multi-line
statements, can be ignored.

The adherence to these coding guidelines is tested automatically by
the test suite (see section 6.3). Violations are counted as test failures.

6.2 future imports

While the first version of Python 3 has been released back in 2008, it
has still not completely managed to replace the older 2.x versions. As
a result, the Tangible codebase currently targets Python 2.

But in the past year several things have happened that accelerated
the adoption rate of Python 3. Most importantly, several big Linux
distributions like Arch Linux1 and Fedora2 have decided to move to
Python 3 as the default Python implementation. Another important
factor was the newly added Python 3 support in big Python frame-
works like Django3.

In view of these facts, the Tangible source code is written in a for-
ward compatible way by adding “future-imports” to the top of every

1 https://www.archlinux.org/

2 http://fedoraproject.org/

3 https://www.djangoproject.com/

33

https://www.archlinux.org/
http://fedoraproject.org/
https://www.djangoproject.com/

34 development process & tools used

code file. Python provides a module called future which contains
backports of newer language features to older Python versions. By us-
ing these imports, the migration process to newer language versions
can be substantially simplified.

In the Tangible Project, the following preamble should be added to
every source code file:

-*- coding: utf-8 -*-

from __future__ import print_function, division

from __future__ import absolute_import, unicode_literals

This results in the following effects:

• The # -*- coding: utf-8 -*- line tells the Python interpreter
that this file source is UTF8-encoded. In Python 3 UTF8 encod-
ing will become the default.

• The print_function import removes the print statement and
adds a print() function.

• When activating the division import, division of two integers
results in a float value instead of the old, lossy way of return-
ing a floored integer. When floor division is explicitly desired,
the // operator should be used instead.

• By importing absolute_import, Python prioritizes absolute im-
ports over relative imports. This fixes a few issues with import
name clashes.

• The unicode_literals import is the one with the most conse-
quences of all the future imports listed above. It changes the
default type of strings from bytestrings to unicode objects. By
eliminating this Python 2/3 inconsistency from the beginning,
many hard to spot migration bugs can be prevented.

The choice of future imports is based on the article Quick Tips on
Making Your Code Python 3 Ready by Hristo Deshev [5].

6.3 testing

More than the act of testing, the act of designing tests is one of
the best bug preventers known. The thinking that must be done
to create a useful test can discover and eliminate bugs before
they are coded — indeed, test-design thinking can discover and
eliminate bugs at every stage in the creation of software, from
conception to specification, to design, coding and the rest.
— Boris Beizer [1]

6.3 testing 35

Test Driven
Development (TDD)
is a software
development
methodology where
tests are written for
every feature before
it is implemented.

Testing is not a question of "whether", but rather a question of "how".
By having a high test coverage of your code base, code can be changed
without any fear of overlooking newly introduced bugs. Additionally,
the TDD methodology greatly aids both the process of writing tests,
as well as the process of writing software. Writing tests before actually
implementing the code leads to better structured code with less bugs
than if testing features after their implementation.

This section can be divided into three subsections: Writing the tests,
running the tests and measuring test coverage.

6.3.1 Writing Tests

Tangible uses the pytest4 framework for writing tests. pytest provides
both tools for easy and lightweight testing as well as a simple method
for test discovery.

In contrast to Python’s builtin unittest module, which was heavily
inspired by Java, pytest does not require the developer to use explicit
methods for expressing assertions like assertEquals or assertGreater.
Instead it relies solely on the assert keyword while still providing
useful error messages by using language reflection.

A simple test could just look like the following example:

def test_the_answer():

assert 19 + 23 == 42

In contrast, the unittest version would look like this:

import unittest

class TestTheAnswer(unittest.TestCase):

def testIt(self):

self.assertEquals(19 + 23, 42)

As the Zen of Python [9] states, “Simple is better than complex.”. In
this regard pytest seems to be a big improvement over the unittest.
But simpler asserts are not the only advantage that pytest offers over
unittest. Another feature that has been used extensively in Tangible is
parametrized testing. By specifying a set of possible values for the test
parameters using the pytest.mark.parametrize decorator, multiple
tests are generated from a single test function. If one of five input
values makes the test fail, the test result would be 4 successful tests
out of a total of 5, whereas putting all the values in a nonparametrized
function would lead to a single failing test.

Here is an example of a parametrized test from the Tangible test
suite:

4 http://pytest.org/

http://pytest.org/

36 development process & tools used

import pytest

from tangible import scales

@pytest.mark.parametrize((’param’, ’clamp’, ’expected’), [

(2, False, 10),

(3.5, False, 17.5),

(6, False, 30),

(6, True, 20),

])

def test_linear(param, clamp, expected):

domain, codomain = (2, 4), (10, 20)

scale = scales.linear(domain, codomain, clamp)

assert scale(param) == expected

6.3.2 Running Tests

pytest offers highly customizable test discovery out of the box. After
configuring the patterns to be used for detecting tests, the suite can
be run by simply issueing py.test in the main project directory.

But manually running tests is a step that’s often forgotten while
developing. Tests are better when they’re fully automated. Travis CI
(https://travis-ci.org/) is a startup company that offers free con-
tinuous integration for open source projects. A minimal configuration
file is all that’s needed to get everything up and running. The test
results are presented in an easy to understand manner in the web
browser:

Figure 10: Travis CI

6.3.3 Measuring Test Coverage

Simply having many tests does not necessarily mean that the code
is well tested. A high test coverage does not either, but it’s a good

https://travis-ci.org/

6.4 tools used 37

indicator on how many lines of code have been hit by the tests, and
how many haven’t.

In the Tangible project, coverage is measured through the cover-
age.py5 module. The result is displayed each time the test suite runs
thanks to the pytest-cov6 plugin for pytest.

Change in test coverage is tracked by the Coveralls service (https:
//coveralls.io/). The current coverage percentage can be displayed
in the README file by embedding a dynamic image from the Cover-
alls server. This way, the current coverage is always visible.

6.4 tools used

During the time of this thesis, the following tools have been used:

• The Vim text editor for editing both program source code and
documentation.
http://www.vim.org/

• Flake8 for code style checks and static code analysis.
https://flake8.readthedocs.org/

• pytest for running the test suite.
http://pytest.org/

• Travis CI for automated testing.
https://travis-ci.org/

• Coveralls for automated test coverage measuring.
https://coveralls.io/

• OpenSCAD to convert the generated model code to actual STL
files.
http://www.openscad.org/

• Makerbot / Makerware to test-print a few of the generated 3D
models.
http://www.makerbot.com/makerware/

• LATEX for typesetting this project documentation.
http://www.latex-project.org/

• Sphinx for generating the online user documentation.
http://sphinx-doc.org/

• Git and Github for version control.
http://git-scm.com/

https://github.com/

5 http://nedbatchelder.com/code/coverage/

6 https://pypi.python.org/pypi/pytest-cov

https://coveralls.io/
https://coveralls.io/
http://www.vim.org/
https://flake8.readthedocs.org/
http://pytest.org/
https://travis-ci.org/
https://coveralls.io/
http://www.openscad.org/
http://www.makerbot.com/makerware/
http://www.latex-project.org/
http://sphinx-doc.org/
http://git-scm.com/
https://github.com/
http://nedbatchelder.com/code/coverage/
https://pypi.python.org/pypi/pytest-cov

7
D E S I G N D E C I S I O N S & I M P L E M E N TAT I O N
D E TA I L S

7.1 pairwise iterator

The pairwise iterator (in tangible/utils.py, see section 4.5.2.1) has
an interesting implementation that might not be immediately obvious
to someone new to Python and its standard library:

from itertools import tee, izip

def pairwise(iterable):

a, b = tee(iterable)

next(b, None)

return izip(a, b)

The tee(iterable, n) function returns n independent iterators from
a single iterable. The default value for n is 2, so in the example above
two iterators called a and b are created from the original iterable.

The second iterator is then advanced once by applying the next()

function to it. The return value is discarded. This results in two itera-
tors, one of them with an offset of 1.

As a last step, the two iterators are zipped together. By using the
izip() function instead of the regular zip(), a lazy generator is re-
turned instead of a list. This decreases memory consumption, espe-
cially when handling large lists.

Now each time the returned generator is advanced one step, the
sliding window is shifted by 1 position and the resulting tuple is
returned, until the end of the iterator is reached.

>>> data = [1, 2, 3, ’a’]

>>> pairs = pairwise(data)

>>> pairs

<itertools.izip object at 0x151def0>

>>> next(pairs)

(1, 2)

>>> next(pairs)

(2, 3)

>>> next(pairs)

(3, ’a’)

>>> next(pairs)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

39

40 design decisions & implementation details

7.2 code generation

Code generating code is often something quite messy, with many
conditionals and a lot of print statements and string formatting. Such
an approach is both hard to read and hard to maintain. Additionally,
it does not reflect the structure of the generated code.

In the OpenSCAD backend implementation, Tangible uses an ap-
proach proposed by Tomer Filiba [6], which builds upon Python’s
context managers to generate nested blocks of code.Context Managers

are Python
constructs that

create a runtime
context for a piece of

code when used in
combination with

the with statement.
They provide enter-
and exit-hooks that

are invoked before
and after executing

that code.

There is a top level class called Program which exposes a statement

method and a block context manager. The class holds a stack of
blocks and a list of child blocks and statements. Each time a block
is entered (by using a with-statement), it is pushed to the stack and
appended to the list of children. When leaving the context manager,
the block is removed again from the stack.

The final code is generated by walking the list of children in the
Program instance recursively. This is also the point where language-
specific features can be implemented, for example indentation of a
block in Python or inserting curly braces in Java or C.

A special feature that was implemented in the code generation is
the support for predefined code snippets to be included in the gener-
ated output. This part of the code is called the “preamble”. Snippets
can be inserted into the preamble multiple times, but they’re rendered
only once. This has proven to be very useful while implementing code
generation for circle sectors (see section 7.3).

Right now all the described classes are contained in the OpenSCAD
backend. By generalizing the code, it would be possible to create a
base class for all code generation backends, with the possibility to
configure the language-specific details in a single subclass. This might
be a good idea for a future version of Tangible.

An extract from the actual code which decides how the AST is
mapped to the backend syntax is shown on the next page.

7.2 code generation 41

class OpenScadBackend(object):

"""Render AST to OpenSCAD source code."""

def __init__(self, ast):

self.ast = ast

def generate(self):

prgm = Program()

BLOCK = prgm.block

STMT = prgm.statement

PRE = prgm.preamble

SEP = prgm.emptyline

def _generate(node):

"""Recursive code generating function."""

istype = lambda t: node.__class__ is t

Handle lists

if istype(list):

for item in node:
_generate(item)

Simple statements

elif istype(ast.Circle):

STMT(’circle({0})’, node.radius)

elif istype(ast.Rectangle):

STMT(’square([{0}, {1}])’, node.width, node.height)

Blocks

elif istype(ast.Union):

with BLOCK(’union()’):
_generate(node.items)

(...)

_generate(self.ast)

return prgm.render()

42 design decisions & implementation details

7.3 circle sectors in openscad

By default, OpenSCAD does not support circle sectors. Therefore the
shape had to be developed manually as a module.

module circle_sector(r, a) {

a1 = a % 360; a2 = 360 - (a % 360);

if (a1 <= 180) {

intersection() {

circle(r);

polygon([

[0,0],

[0,r],

[sin(a1/2)*r, r + cos(a1/2)*r],

[sin(a1)*r + sin(a1/2)*r, cos(a1)*r + cos(a1/2)*r],

[sin(a1)*r, cos(a1)*r],

]);

}

} else {

difference() {

circle(r);

mirror([1,0]) {

polygon([

[0,0],

[0,r],

[sin(a2/2)*r, r + cos(a2/2)*r],

[sin(a2)*r + sin(a2/2)*r, cos(a2)*r + cos(a2/2)*r],

[sin(a2)*r, cos(a2)*r],

]);

};

}

}

};

The base concept is a boolean combination of a circle and a polygon,
depending on the angle. If the angle is less than or equal to 180

◦, the
resulting shape is the intersection of the circle and the polygon. If it’s
larger than 180

◦, the difference between the two shapes is returned.
The polygon always consists of five points, which are calculated

as shown in the following table for angles less or equal to 180
◦. For

angles between 180
◦ and 360

◦, the polygon is simply mirrored along
the y axis.

x y

0 0

0 r

sin(α/2) · r r+ cos(α/2) · r
sin(α) · r+ sin(α/2) · r cos(α) · r+ cos(α/2) · r
sin(α) · r cos(α) · r

7.3 circle sectors in openscad 43

The following six images show the circle and polygon combinations
for 45, 90, 180, 225, 270 and 315 degrees.

(a) (b) (c)

(d) (e) (f)

Figure 11: Circle and polygon combinations at different angles

By combining the two shapes in such a way, any circle sector can be
created. Example for circle_sector(10, 225):

Figure 12: The resulting circle sector for an angle of 225
◦

The module source code is used in the OpenSCAD backend imple-
mentation as a preamble snippet.

Part IV

A P P E N D I X

B I B L I O G R A P H Y

[1] Boris Beizer. Software Testing Techniques. Dreamtech, 2003. ISBN
9788177222609.

[2] Erik De Bruijn. On the viability of the open source develop-
ment model for the design of physical objects. Master’s thesis,
Tilburg University, 2010. URL http://thesis.erikdebruijn.nl/

master/MScThesis-ErikDeBruijn-2010.pdf.

[3] S. Scott Crump. Apparatus and method for creating three-
dimensional objects, June 1992. URL https://www.google.com/

patents/US5121329.

[4] Karen Day. Andreas Nicolas Fischer: Data Visualiza-
tion Art, 2009. URL http://www.coolhunting.com/culture/

andreas-nicolas.php.

[5] Hristo Deshev. Quick Tips on Making Your Code
Python 3 Ready, 2012. URL http://stackful-dev.com/

quick-tips-on-making-your-code-python-3-ready.html.

[6] Tomer Filiba. Code Generation using Context Man-
agers, 2012. URL http://tomerfiliba.com/blog/

Code-Generation-Context-Managers/.

[7] Vitaly Friedman. Data Visualization and In-
fographics. Smashing Magazine, January 2008.
http://www.smashingmagazine.com/2008/01/14/

monday-inspiration-data-visualization-and-infographics/.

[8] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3D Rep-
resentations for Software Visualization. In Proceedings of the
2003 ACM Symposium on Software Visualization, SoftVis ’03, pages
27–ff, New York, NY, USA, 2003. ACM. ISBN 1-58113-642-
0. doi: 10.1145/774833.774837. URL http://doi.acm.org/10.

1145/774833.774837.

[9] Tim Peters. The Zen of Python, 2004. URL http://www.python.

org/dev/peps/pep-0020/.

[10] Dylan Schenker. Miebach and Posavec – Data,
Visualization, Poetry and Sculpture, 2012. URL
http://www.creativeapplications.net/theory/

meibach-and-posavec-data-visualization-poetry-and-sculpture/.

47

http://thesis.erikdebruijn.nl/master/MScThesis-ErikDeBruijn-2010.pdf
http://thesis.erikdebruijn.nl/master/MScThesis-ErikDeBruijn-2010.pdf
https://www.google.com/patents/US5121329
https://www.google.com/patents/US5121329
http://www.coolhunting.com/culture/andreas-nicolas.php
http://www.coolhunting.com/culture/andreas-nicolas.php
http://stackful-dev.com/quick-tips-on-making-your-code-python-3-ready.html
http://stackful-dev.com/quick-tips-on-making-your-code-python-3-ready.html
http://tomerfiliba.com/blog/Code-Generation-Context-Managers/
http://tomerfiliba.com/blog/Code-Generation-Context-Managers/
http://www.smashingmagazine.com/2008/01/14/monday-inspiration-data-visualization-and-infographics/
http://www.smashingmagazine.com/2008/01/14/monday-inspiration-data-visualization-and-infographics/
http://doi.acm.org/10.1145/774833.774837
http://doi.acm.org/10.1145/774833.774837
http://www.python.org/dev/peps/pep-0020/
http://www.python.org/dev/peps/pep-0020/
http://www.creativeapplications.net/theory/meibach-and-posavec-data-visualization-poetry-and-sculpture/
http://www.creativeapplications.net/theory/meibach-and-posavec-data-visualization-poetry-and-sculpture/

48 bibliography

[11] Guido Van Rossum, Barry Warsaw, and Nick Coghlan. Pep8:
Style Guide for Python Code, 2001. URL http://www.python.

org/dev/peps/pep-0008/.

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

D E C L A R AT I O N

Hereby I acknowledge,

• that I conducted this thesis by myself and without any external
help, except with those, which are explicitly mentioned,

• that all used sources are cited academically correct, and

• that I didn’t use any copyright protected materials (e.g. images)
in an unauthorized manner.

Rapperswil, Fall 2013

Danilo Bargen, December 21, 2013

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Acronyms
	Introduction
	1 Motivation
	1.1 Data Visualization
	1.2 The Rise of Affordable 3D Printing
	1.3 From Data to Tangible Objects

	2 Goals
	2.1 Features
	2.2 Usability
	2.3 Quality

	The Library
	3 Features & Usage
	3.1 Introduction
	3.2 Usage
	3.2.1 Preprocessing Data
	3.2.2 Creating a Shape Instance
	3.2.3 Rendering the Code

	3.3 Future Developments
	3.3.1 More Backends
	3.3.2 More Shapes
	3.3.3 Interpolation / Smoothing
	3.3.4 Data Preprocessing Tools
	3.3.5 Python 3 Support

	4 Architecture
	4.1 Overview
	4.2 AST
	4.2.1 Base Class
	4.2.2 2D Shapes
	4.2.3 3D Shapes
	4.2.4 Transformations
	4.2.5 Boolean Operations
	4.2.6 Extrusions

	4.3 Backends
	4.3.1 Creating Custom Backends

	4.4 Shapes
	4.4.1 Base Class
	4.4.2 Mixins
	4.4.3 Shape Classes

	4.5 Utils
	4.5.1 Scales
	4.5.2 Helper Functions

	5 Examples
	5.1 A Simple Tower
	5.2 Multi Dimensional Data
	5.3 Reading Data from CSV
	5.4 Grouped Data
	5.5 Creating Custom Shapes from AST

	The Development Process
	6 Development Process & Tools Used
	6.1 Coding Guidelines
	6.2 Future Imports
	6.3 Testing
	6.3.1 Writing Tests
	6.3.2 Running Tests
	6.3.3 Measuring Test Coverage

	6.4 Tools Used

	7 Design Decisions & Implementation Details
	7.1 Pairwise Iterator
	7.2 Code Generation
	7.3 Circle Sectors in OpenSCAD

	Appendix
	Bibliography
	Declaration

